Respuesta :

Answer:

Final answer is [tex]P(B|A) = 0.25[/tex].

Step-by-step explanation:

We have been given values of

P(A) = 0.40, P(B) = 0.50, and  P(A and B) = 0.10

Now we need to find about what is the value of P(B/A).

Apply formula [tex]P (A \, and \, B)=P(A) \times P(B|A)[/tex]

Plug the given values into above formula:

[tex]P (A \, and \, B)=P(A) \times P(B|A)[/tex]

[tex]0.10 =0.40 \times P(B|A)[/tex]

[tex]\frac{0.10}{0.40} =P(B|A)[/tex]

[tex]0.25 =P(B|A)[/tex]

[tex]P(B|A) = 0.25[/tex]

Hence final answer is [tex]P(B|A) = 0.25[/tex].

Answer: 0.25

Step-by-step explanation: