Respuesta :

Answer:

A. [tex]y\le2x^2-8x+3[/tex]

Step-by-step explanation:

The given parabola has vertex at (2,-5).

The equation of this parabola in vertex form is given by:

[tex]y=a(x-h)^2+k[/tex], where (h,k)=(2,-5) is the vertex  of the parabola.

We substitute the values to get:

[tex]y=a(x-2)^2-5[/tex]

The graph passes through; (0,3).

[tex]3=a(0-2)^2-5[/tex]

[tex]\implies 3+5=4a[/tex]

[tex]\implies 8=4a[/tex]

[tex]\implies a=2[/tex]

Hence the equation of the parabola is

[tex]y=2(x-2)^2-5[/tex]

We expand this to get:

[tex]y=2x^2-8x+8-5[/tex]

[tex]y=2x^2-8x+3[/tex]

Since the outward region was shaded, the corresponding inequality is

[tex]y\le2x^2-8x+3[/tex]

The correct answer is A