The two-way table shows the number of books of each type in Eliza's home what is the probability that a randomly selected reference book is hard cover

Answer:
B. 0.4
Step-by-step explanation:
Use the definition of the probability
[tex]Pr=\dfrac{\text{Number of all favorable outcomes}}{\text{Number of all possible outcomes}}[/tex]
You have to find the probability that a randomly selected reference book is hard cover. Hence, from the table
So, the probability is
[tex]Pr=\dfrac{10}{25}=\dfrac{40}{100}=0.4[/tex]
Hence, the probability that a randomly selected reference book is a hardcover is:
0.4
Let A denote the event that the book selected is a reference book.
and B denote the event that the book is hardcover.
Let P denote the probability of an event.
We are asked to find:
P(B|A)
We know that:
[tex]P(B|A)=\dfrac{P(A\bigcap B)}{P(A)}[/tex]
From the table we have:
[tex]P(A)=\dfrac{25}{60}=\dfrac{5}{12}[/tex]
and
[tex]P(A\bigcap B)=\dfrac{10}{60}=\dfrac{1}{6}[/tex]
Hence, we have:
[tex]P(B|A)=\dfrac{\dfrac{1}{6}}{\dfrac{5}{12}}\\\\\\P(B|A)=\dfrac{2}{5}\\\\\\P(B|A)=0.4[/tex]
Hence, the answer is:
0.4