Respuesta :

ANSWER

Relative minimum occurs at x=0

Relative maximum occurs at x=-2

EXPLANATION

The given function is;

[tex]f(x) = 3 {x}^{3} + 9 {x}^{2} - 1[/tex]

We take the first derivative to get:

[tex]f'(x) = 9 {x}^{2} + 18x[/tex]

At turning point f'(x)=0

[tex] 9 {x}^{2} + 18x = 0[/tex]

[tex] 9x(x + 2) = 0[/tex]

[tex]x = 0 \: or \: x = - 2[/tex]

We take the second derivative to get

[tex]f''(x) = 18x + 18

[/tex]

[tex]f''(0) = 18(0) + 18 = 18 \: > \: 0[/tex]

Relative minimum occurs at x=0

[tex]f''( - 2) = 18( - 2)+ 18 = - 18 \: < \: 0[/tex]

Relative maximum occurs at x=-2

Answer:

Relative minimum occurs at x=0

Relative maximum occurs at x=-2

Step-by-step explanation: