Respuesta :

For this case we must indicate an expression equivalent to:

[tex]\sqrt {\frac {2x ^ 5} {18}}[/tex]

We rewrite 18 as 2 * 9:

[tex]\sqrt {\frac {2x ^ 5} {2 * 9}} =[/tex]

We simplify common factors:

[tex]\sqrt {\frac {x ^ 5} {9}} =[/tex]

We rewrite:

[tex]x ^ 5 = x ^ 4 * x = (x ^ 2) ^ 2 * x\\9 = 3 ^ 2[/tex]

So, we have:

[tex]\sqrt {\frac {(x ^ 2) ^ 2 * x} {3 ^ 2}} =\\\sqrt {(\frac {x ^ 2} {3}) ^ 2 * x} =[/tex]

We get the terms of the radical "

[tex]\frac {x ^ 2} {3} \sqrt {x}[/tex]

Answer:

[tex]\frac {x ^ 2} {3} \sqrt {x}[/tex]

iriesm

Answer:

The answer is A

Step-by-step explanation:

The other guy is correct I'm just making it easier to get the answer quickly.