Respuesta :
Answer:
[tex]x=4.459[/tex]
Step-by-step explanation:
We have the following equation
[tex]2^{(x-1)} =11[/tex]
To solve the function, apply the equation [tex]log_2[/tex] on both sides of the equation
[tex]log_2(2^{(x-1)}) =log_2(11)[/tex]
Remember that
[tex]log_b(b)^x =x[/tex]
So
[tex](x-1) =log_2(11)[/tex]
[tex]x =log_2(11) + 1[/tex]
Finally
[tex]x=4.459[/tex]
Answer:
x = 4.46
Step-by-step explanation:
We are to solve the following expression:
[tex]2^{(x-1)}=11[/tex]
Taking the natural logarithm of both sides of the equation to remove the variable from the exponent. to get:
[tex] ln ( 2 ^ { x - 1 } ) = l n ( 1 1 ) [/tex]
[tex] ( x - 1 ) l n ( 2 ) = l n ( 1 1 ) [/tex]
Applying the distributive property:
[tex]xln(2)-1ln(2)=ln(11)[/tex]
Solving for x to get:
[tex]x=\frac{ln(11)}{ln(2)} +1[/tex]
x = 4.46