Respuesta :

Answer:

[tex]x=4.459[/tex]

Step-by-step explanation:

We have the following equation

[tex]2^{(x-1)} =11[/tex]

To solve the function, apply the equation [tex]log_2[/tex] on both sides of the equation

[tex]log_2(2^{(x-1)}) =log_2(11)[/tex]

Remember that

[tex]log_b(b)^x =x[/tex]

So

[tex](x-1) =log_2(11)[/tex]

[tex]x =log_2(11) + 1[/tex]

Finally

[tex]x=4.459[/tex]

Answer:

x = 4.46

Step-by-step explanation:

We are to solve the following expression:

[tex]2^{(x-1)}=11[/tex]

Taking the natural logarithm of both sides of the equation to remove the variable from the exponent. to get:

[tex] ln ( 2 ^ { x - 1 } ) = l n ( 1 1 ) [/tex]

[tex] ( x - 1 ) l n ( 2 ) = l n ( 1 1 ) [/tex]

Applying the distributive property:

[tex]xln(2)-1ln(2)=ln(11)[/tex]

Solving for x to get:

[tex]x=\frac{ln(11)}{ln(2)} +1[/tex]

x = 4.46