Respuesta :

[tex]2x^{2}+5x-9=2x\\2x^{2}+3x-9=0\\(x+3)(2x-3)=0\\\boxed{x=-3,\frac{3}{2}}[/tex]

ANSWER

[tex]x = \frac{3}{2} \: or \: x = - 3[/tex]

EXPLANATION

We want to find the roots of the parabola with equation:

[tex]2 {x}^{2} + 5x - 9 = 2x[/tex]

We need to write this in the standard quadratic equation form.

We group all terms on the left to get:

[tex]2 {x}^{2} + 5x - 2x - 9 = 0[/tex]

We simplify to get:

[tex]2 {x}^{2} +3x- 9 = 0[/tex]

We now compare to:

[tex]a {x}^{2} + bx + c = 0[/tex]

[tex] \implies \: a = 2 , \: \: b = 3 \: \: and \: c=- 9[/tex]

[tex] \implies ac = 2 \times - 9 = - 18[/tex]

The factors of -18 that sums up to 3 are -3, 6.

We split the middle term with these factors to get:

[tex]2 {x}^{2} +6x - 3x- 9 = 0[/tex]

Factor by grouping:

[tex]2x(x + 3) -3(x + 3) = 0[/tex]

Factor again to obtain:

[tex](2x - 3)(x + 3) = 0[/tex]

Apply the zero product principle to get:

[tex]2x - 3 = 0 \: or \: x + 3 = 0[/tex]

[tex] \implies \: x = \frac{3}{2} \: or \: x = - 3[/tex]