A parallel-plate capacitor is formed from two 6.0-cm-diameter electrodes spaced 2.0 mm apart. The electric field strength inside the capacitor is 1.0×106 N/C1.0×106 N/C. What is the charge (in nC) on each electrode?

Respuesta :

Answer:

2.5 x 10^-8 C

Explanation:

Diameter = 6 cm, radius = 3 cm = 0.03 m, d = 2 mm = 2 x 10^-3 m

E = 1 x 10^6 N/C, q = ?

q = C V

As we know that, V = E x d and C = ∈0 A / d

q = ∈0 x A x E x d / d

q = ∈0 x A x E

q = 8.854 x 10^-12 x 3.14 x 0.03 x 0.03 x 1 x 10^6

q = 2.5 x 10^-8 C

Electric field exerts a force on all charged particles. The charge on the electrode is 2.505 x 10⁻⁸ C.

What is an electric field?

An electric field can be thought to be a physical field that surrounds all the charged particles and exerts a force on all of them.

Given to us

Plate dimensions diameter, d = 6 cm

Area of the plate, A = πr² = π(0.03)² = 0.00283 m²

Distance between the two plates, d = 2 mm = 0.002 m

Electric field strength, E  = 1.0 x 10⁶ N/C

We know that electric field inside a parallel plate capacitor is given as,

[tex]E = \dfrac{Q}{A\epsilon_0}[/tex]

Substitute the value,

[tex]1 \times 10^6 = \dfrac{Q}{0.00283 \times 8.854 \times 10^{-12}}[/tex]

Q = 2.505 x 10⁻⁸ C

Hence, the charge on the electrode is 2.505 x 10⁻⁸ C.

Learn more about Electric Field:

https://brainly.com/question/4440057