Which equation represents a circle that contains the point (-2, 8) and has a center at (4, 0)

Answer:
Option 1:(x-4)^2+y^2=100
Step-by-step explanation:
Given center = (h,k) = (4,0)
The point (-2,8) lies on circle which means the distance between the point and center will be equal to the radius.
So,
The distance formula will be used:
[tex]d = \sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}} \\=\sqrt{(4+2)^{2}+(0-8)^{2}}\\=\sqrt{(6)^{2}+(-8)^{2}}\\=\sqrt{36+64}\\ =\sqrt{100}\\ =10\ units[/tex]
Hence radius is 10.
The standard form of equation of circle is:
(x-h)^2+(y-k)^2 = r^2
Putting the values
(x-4)^2+(y-0)^2=10^2
(x-4)^2+y^2=100
Hence option 1 is correct ..