A tank initially holds 200 gallons of fresh water (no salt). A brine solution containing 2 pounds of salt per gallon is poured in at a rate of 3 gallons per minute. The tank is kept well-mixed and drained at the rate of 3 gallons per minute. Write and solve an initial value differential equation to model the amount of salt, A, in the tank at time, t. 2.

Respuesta :

Answer:

1.99 pounds per gallon of salt in t=2 in the tank.

Step-by-step explanation:

First we consider the matter balance equation that contemplates the input and output; the generation and consumption equal to the acomulation.  

[tex]  Acomulation = Input - Output + Generation - Consumption [/tex]

In this case we have no Generation neither do Consumption so, if we consider Acomulation = A(t), the rate of change of A(t) in time is given by:

[tex]\frac{dA}{dt}+R_{out}A(t)= CR_{s}[/tex] ---(1)

where C is th concentration, with the initial value statement that A(t=0) = 0 because there is no salt in the time cero in the tank, only water.

Given the integral factor -> [tex]u(t)= exp[R_{out}] [/tex] and multipying the entire (1) by it, we have:

[tex]\int \frac{d}{dt}[A(t) \exp[R_{out}t]] \, dt = CR_{in} \int \exp[R_{out}t] \, dt[/tex]

Solving this integrals we obtain:

[tex]A(t)=\frac{CR_{in}}{R_{out}}+Cte*\exp[-R_{out}t][/tex]

So given the initial value condition A(t=0)=0 we have:

[tex]Cte=- \frac{CR_{in}}{R_{out}}[/tex],

and the solution is,

[tex]A(t)=\frac{CR_{in}}{R_{out}}-\frac{CR_{in}}{R_{out}}\exp[-R_{out}t][/tex].

If we give the actual values we obtain then,

[tex]A(t)=2\frac{pounds}{gallon}-2\frac{pounds}{gallon} \exp[-3t][/tex].

So in t= 2 we have [tex]A(t)=2\frac{pounds}{gallon}[/tex].