(x^2y^3) = (xy^a)^b
In the equation above, a and b are constants, and the
equation is true for all x > 0 and y > 0. What is the
value of a ?

The correct answer is C, 3/2

Thanks!

x2y3 xyab In the equation above a and b are constants and the equation is true for all x gt 0 and y gt 0 What is the value of a The correct answer is C 32 Thank class=

Respuesta :

Answer:

C. [tex] \frac{3}{2} [/tex]

Step-by-step explanation:

To find the value f b, we need to compare the exponents.

The given exponential equation is:

[tex]( {x}^{2} {y}^{3} )^{3} = ( {x} {y}^{a} )^{b}[/tex]

Recall and apply the following rule of exponents.

[tex] ( {x}^{m} )^{n} = {x}^{mn}[/tex]

We apply this rule on both sides to get:

[tex]{x}^{2 \times 3} {y}^{3 \times 3} = {x}^{b} {y}^{ab}[/tex]

Simplify the exponents on the left.

[tex]{x}^{6} {y}^{9} = {x}^{b} {y}^{ab}[/tex]

Comparing exponents of the same variables on both sides,

[tex]b = 6 \: and \:\: ab = 9[/tex]

[tex] \implies \: 6b = 9[/tex]

Divide both sides by 6.

[tex]b = \frac{9}{6} [/tex]

[tex]b = \frac{3}{2} [/tex]