Respuesta :

Answer:

The expression [tex]m^3-n^3[/tex] is even if both variables (m and n) are even or both are odd

Step-by-step explanation:

Let's remember the logical operations with even and odd numbers

odd*odd=odd

even*even=even

odd*even=even

odd-odd=even

even-even=even

even-odd=odd

Now, the original expression is:

[tex]m^3-n^3[/tex] which can be expressed as:

[tex](m*(m*m))-(n*(n*n))[/tex]

If m and n are both odd, then:

[tex](m*(m*m))=odd*(odd*odd)=odd*(odd)=odd[/tex]

[tex](n*(n*n))=odd*(odd*odd)=odd*(odd)=odd[/tex]

Then, [tex](m*(m*m))-(n*(n*n))=odd-odd=even[/tex]

If m and n are both even, then:

[tex](m*(m*m))=even*(even*even)=odd*(even)=even[/tex]

[tex](m*(m*m))=even*(even*even)=odd*(even)=even[/tex]

Then, [tex](m*(m*m))-(n*(n*n))=even-even=even[/tex]

Finally if one of them is even, for example m, and the other is odd, for example n, then:

[tex](m*(m*m))=even*(even*even)=odd*(even)=even[/tex]

[tex](n*(n*n))=odd*(odd*odd)=odd*(odd)=odd[/tex]

Then, [tex](m*(m*m))-(n*(n*n))=even-odd=odd[/tex]

In conclusion, the expression [tex]m^3-n^3[/tex] is even if both variables (m and n) are even or both are odd. If one of them is even and the other one is odd, then the expression is odd.