Respuesta :

Answer: 23.22


Step-by-step explanation:

Given function: [tex]f(x)=0.01(2)^x[/tex]

At x=7

[tex]f(7)=0.01(2)^7=1.28[/tex]

At x=14

[tex]f(14)=0.01(2)^{14}=163.84[/tex]

We know that the rate of change from [tex]x_1[/tex] to  [tex]x_2[/tex] of function is given by

[tex]=\frac{f(x_2)-f(x_1)}{x_2-x_1}[/tex]

Therefore, The rate of change of given function from x=7 to x=14

[tex]=\frac{f(14)-f(7)}{14-7}\\\\=\frac{163.84-1.28}{14-7}\\\\=\frac{162.56}{7}\\\\=23.22[/tex]

Therefore, the average rate of change from x = 7 to x = 14 for the given function is 23.22

Answer:

the answer is 23.22

Step-by-step explanation: