Respuesta :

Answer:

The roots are

[tex]x=\frac{-5+i\sqrt{3}}{2}[/tex]  and  [tex]x=\frac{-5-i\sqrt{3}}{2}[/tex]

Step-by-step explanation:

we have

[tex]x^{2} +5x+7[/tex]

To find the roots equate the polynomial to zero and cmplete the square

[tex]x^{2} +5x+7=0[/tex]

[tex]x^{2} +5x=-7[/tex]

[tex](x^{2} +5x+2.5^{2})=-7+2.5^{2}[/tex]

[tex](x^{2} +5x+6.25)=-0.75[/tex]

rewrite as perfect squares

[tex](x+2.5)^{2}=-0.75[/tex]

take square root both sides

[tex](x+2.5)=(+/-)\sqrt{-\frac{3}{4}}[/tex]

Remember that

[tex]i=\sqrt{-1}[/tex]

substitute

[tex](x+2.5)=(+/-)i\sqrt{\frac{3}{4}}[/tex]

[tex](x+\frac{5}{2})=(+/-)i\frac{\sqrt{3}}{2}[/tex]

[tex]x=-\frac{5}{2}(+/-)i\frac{\sqrt{3}}{2}[/tex]

therefore

The roots are

[tex]x=\frac{-5+i\sqrt{3}}{2}[/tex]

[tex]x=\frac{-5-i\sqrt{3}}{2}[/tex]