Calculate cos theta to two decimal places.
A. 0.69
B. 1.38
C. -0.07
D. 0.77

Answer:
A. 0.69
Step-by-step explanation:
We need to use cosine theorem:
c²=a²+b² - 2ab* cos(θ)
c=8, a=7, b=11
8² = 7²+11² - 2*7*11 *cos(θ)
64 = 49 + 121 - 154*cos(θ)
64 - 170 = - 154*cos(θ)
- 106/ (- 154) = cos(θ)
cos(θ) = 0.69
Answer:
A. 0.69
Step-by-step explanation:
Using the cosine law
a² = b² + c² - 2bc cos A
b² = a² + c² - 2ac cos B
c² = a² + b² - 2ab cos C
8² = 7² + 11² - 2 × 7× 11 cos ∅
64 = 49 + 121 -154 × cos ∅
64 = 170 - 154 cos ∅
64 - 170 = -154 cos ∅
- 106 = -154 cos ∅
cos ∅ = -106/-154
cos ∅ = 0.6883116883 ≈ 0.69