Answer:
The mass of sand grains is [tex]1.413\times10^{-9}\ kg[/tex]
Explanation:
Given that,
Radius [tex]r = 50\ mu m[/tex]
Density[tex]\rho=2.7\times10^{3}\ kg/m^3[/tex]
Cube edge = 0.8 m
We need to calculate the mass of sand grains
Using formula of density
[tex]\rho = \dfrac{m}{V}[/tex]
[tex]m=\rho\times V[/tex]
Where, [tex]\rho[/tex] = density
V = volume
Put the value into the formula
[tex]m =2.7\times10^{3}\times\dfrac{4}{3}\pi\timesr^3[/tex]
[tex]m=2.7\times10^{3}\times\dfrac{4}{3}\times3.14\times(50\times10^{-6})^3[/tex]
[tex]m=1.413\times10^{-9}\ kg[/tex]
Hence, The mass of sand grains is [tex]1.413\times10^{-9}\ kg[/tex]