Answer:
(b) 32.2°
Explanation:
Using Snell's law as:
[tex]n_i\times {sin\theta_i}={n_r}\times{sin\theta_r}[/tex]
Where,
[tex]{\theta_i}[/tex] is the angle of incidence ( 30.0° )
[tex]{\theta_r}[/tex] is the angle of refraction ( ? )
[tex]{n_r}[/tex] is the refractive index of the refraction medium (Material B, n=5 / 4)
[tex]{n_i}[/tex] is the refractive index of the incidence medium (Material A, n=4 / 3)
Hence,
[tex]{\frac {4}{3}}\times {sin30.0^0}={\frac {5}{4}}\times{sin\theta_r}[/tex]
Angle of refraction = [tex]sin^{-1}0.5333[/tex] = 32.2°