Light passes from a material A, which has an index of refraction of 4/3, into material B, which has an index of refraction of 5/4. If the angle of incidence is 30°, what is the angle of refraction? (a) 14.1° (b) 32.2° (C) 28.4° (d) 46.0° (e) 51.0°

Respuesta :

Answer:

(b) 32.2°

Explanation:

Using Snell's law as:

[tex]n_i\times {sin\theta_i}={n_r}\times{sin\theta_r}[/tex]

Where,  

[tex]{\theta_i}[/tex]  is the angle of incidence  ( 30.0° )

[tex]{\theta_r}[/tex] is the angle of refraction  ( ? )

[tex]{n_r}[/tex] is the refractive index of the refraction medium  (Material B, n=5 / 4)

[tex]{n_i}[/tex] is the refractive index of the incidence medium (Material A, n=4 / 3)

Hence,  

[tex]{\frac {4}{3}}\times {sin30.0^0}={\frac {5}{4}}\times{sin\theta_r}[/tex]

Angle of refraction = [tex]sin^{-1}0.5333[/tex] = 32.2°