Answer:[tex]T=31.42 \times 10^{-9} s[/tex]
Explanation:
Given
mass of proton [tex]=1.67\times 10^{-27} kg[/tex]
Magnetic Field(B)=2 T
Required centripetal Force to move in a circle is provided by magnetic field
[tex]mv\omega [/tex]=qvB
[tex]\omega =\frac{qB}{m}[/tex]
Where q=charge of proton
B=magnetic Field
v=Velocity of Charge
[tex]\omega [/tex]=Angular velocity
Also
[tex]\omega T=2\pi [/tex]
[tex]T=\frac{2\pi }{\omega }[/tex]
[tex]T=\frac{2\pi m}{qB}[/tex]
[tex]T=\frac{2\times \pi 1.67\times 10^{-27}}{1.6\times 10^{-19}\times 2}[/tex]
[tex]T=31.42 \times 10^{-9} s[/tex]