Answer: The correct answer is Option 5.
Explanation:
[tex]M=\frac{n_1M_1V_1+n_2M_2V_2}{V_1+V_2}[/tex]
where,
[tex]n_1,M_1\text{ and }V_1[/tex] are the n-factor, molarity and volume of the NaOH.
[tex]n_2,M_2\text{ and }V_2[/tex] are the n-factor, molarity and volume of the [tex]Ca(OH)_2[/tex]
We are given:
[tex]n_1=1\\M_1=0.10M\\V_1=50mL\\n_2=2\\M_2=0.1\\V_2=50mL[/tex]
Putting all the values in above equation, we get:
[tex]M=\frac{(1\times 0.1\times 50)+(2\times 0.1\times 50)}{50+50}\\\\M=0.15M[/tex]
[tex]n_1M_1V_1=n_2M_2V_2[/tex]
where,
[tex]n_1,M_1\text{ and }V_1[/tex] are the n-factor, molarity and volume of acid which is [tex]HCl[/tex]
[tex]n_2,M_2\text{ and }V_2[/tex] are the n-factor, molarity and volume of base.
We are given:
[tex]n_1=1\\M_1=?M\\V_1=250mL\\n_2=1\\M_2=0.15M\\V_2=100mL[/tex]
Putting values in above equation, we get:
[tex]1\times M_1\times 250=1\times 0.15\times 100\\\\M_1=0.06M[/tex]
Hence, the correct answer is Option 5.