Answer:
a)V= 179.056 m/s
b)[tex]a_{r}=843.71 g \ m/s^2[/tex]
Explanation:
Given that
Length of blade = 3.8 m
Rotational speed N= 450 rev/min
We know that
[tex]\omega =\dfrac{2\pi N}{60}\ \frac{rad}{s}[/tex]
[tex]\omega =\dfrac{2\pi \times 450}{60}\ \frac{rad}{s}[/tex]
ω=47.12 rad/s
Linear velocity
We know that linear velocity V = ω x r
Here r = 3.8 m
So by putting the values
V = ω x r
V = 47.12 x 3.8 m/s
V= 179.056 m/s
Radial acceleration
[tex]a_{r}=\omega ^2r\ m/s^2[/tex]
[tex]a_{r}=47.12^2\times 3.8 \ m/s^2[/tex]
[tex]a_{r}=8437.12 \ m/s^2[/tex]
[tex]a_{r}=843.71 g \ m/s^2[/tex]