Answer:
a) [tex]V_{A/B}=31.95(-i) + 46.07(-j) km/h[/tex]
b) [tex]r_{A/B}(t)=(2.5-31.95t)(i)+(4-46.07)(j)km[/tex] where t is in hours
c) t=0.084h
d) d=0.22km
Explanation:
We know that:
[tex]V_{A/B}=V_A-V_B=(0,-22)-(40*cos(37),40*sin(37))[/tex]
[tex]V_{A/B}=(-31.95,-46.07)km/h[/tex]
For the position:
[tex]r_{A/B}(t)=ro_{A/B}+V_{A/B}*t[/tex]
[tex]r_{A/B}(t)=(2.5,4)+(-31.95,-46.07)*t=(2.5-31.95*t,4-46.07*t)km[/tex]
The separation is given by the module of their relative position:
[tex]d=\sqrt{(2.5-31.95*t)^2+(4-46.07*t)^2}[/tex] To find the least distance, we have to derive and make equal 0 to find t:
[tex]d'=\frac{2*(-31.95)*(2.5-31.95*t)+2*(-46.07)*(4-46.07*t)}{2*\sqrt{(2.5-31.95*t)^2+(4-46.07*t)^2}} =0[/tex] Solving for t:
t = 0.084h
Evaluating d when t=0.084 we get:
d=0.22km