Respuesta :

Answer:

12

Step-by-step explanation:

multiplication of 3

Option (A)  

Answer:

The next term in the sequence 3, 6, 9, …  is 12

Solution:

Given sequence is 3, 6, 9,…

Let say first term [tex]a_{1}=3[/tex]

Second term [tex]a_{2} = 6[/tex]

And third term [tex]a_{3} = 9[/tex]

Now let’s determine the common difference ‘d’ that is

[tex]\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=6-3=3[/tex]

[tex]\mathrm{d}=\mathrm{a}_{3}-\mathrm{a}_{2}=9-6=3[/tex]

Since [tex]\mathrm{a}_{2}-\mathrm{a}_{1}=\mathrm{a}_{3}-\mathrm{a}_{2}=3[/tex]

so given series is arithmetic progressions. We need next term that is [tex]a_{4}[/tex]

Formula of nth term of AP is as follows,

[tex]a_{n}=a_{1}+(n-1) d[/tex]

So fourth term is when n = 4,

[tex]\mathrm{a}_{4}=3+(4-1) \times 3[/tex]

[tex]\mathrm{a}_{4}=3+3 \times 3[/tex]

[tex]a_{4}=3+9=12[/tex]

So next term of given sequence is 12. Hence option (A) is correct.