Answer:
a) 0.658 seconds
b) 0.96 inches
Explanation:
[tex]v=u+at\\\Rightarrow 0=4.5-32.1\times t\\\Rightarrow \frac{-4.5}{-32.1}=t\\\Rightarrow t=0.14 \s[/tex]
Time taken by the ball to reach the highest point is 0.14 seconds
[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow s=4.5\times 0.14+\frac{1}{2}\times -32.1\times 0.14^2\\\Rightarrow s=0.315\ ft[/tex]
The highest point reached by the snowball above its release point is 0.315 ft
Total height the snowball will fall is 4+0.315 = 4.315 ft
[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow 4.315=0t+\frac{1}{2}\times 32.1\times t^2\\\Rightarrow t=\sqrt{\frac{4.315\times 2}{32.1}}\\\Rightarrow t=0.518\ s[/tex]
The snowball will reach the bank at 0.14+0.518 = 0.658 seconds after it has been thrown
[tex]v=u+at\\\Rightarrow v=0+32.1\times 0.518\\\Rightarrow v=16.62\ ft/s[/tex]
[tex]v^2-u^2=2as\\\Rightarrow s=\frac{v^2-u^2}{2a}\\\Rightarrow s=\frac{0^2-16.62^2}{2\times -100\times 3.28}\\\Rightarrow s=0.42\ ft[/tex]
The snowball goes 0.5-0.42 = 0.08 ft = 0.96 inches