Answer:
a) [tex]v(0)=84ft/s[/tex]
b) [tex]A=2s[/tex]
[tex]B=7s[/tex]
c) [tex]s(t=18s)=4428ft[/tex]
d) Δs=4428ft
Explanation:
From the exercise we know the equation of position
[tex]s(t)=2t^3-27t^2+84t[/tex]
a) To calculate the velocity we need to derivate the equation of position
[tex]v=\frac{ds}{dt}=6t^2-54t+84[/tex]
So, v(0) is:
[tex]v(0)=6(0)^2-54(0)+84=84ft/s[/tex]
b) To find the two times where the particle stops A and B we need to solve the quadratic equation:
[tex]0=6t^2-54t+84[/tex]
Solving for t
[tex]t=\frac{-b±\sqrt{b^2-4ac} }{2a}[/tex]
[tex]a=6\\b=-54\\c=84[/tex]
[tex]t=2s[/tex] and [tex]t=7s[/tex]
[tex]A=2s\\B=7s[/tex]
c)
[tex]s(18s)=2(18)^3-27(18)^2+84(18)=4428ft[/tex]
d) Δs=4428ft-0ft=4428ft