Answer: The volume when the pressure and temperature has changed is 2.19 L
Explanation:
To calculate the volume when temperature and pressure has changed, we use the equation given by combined gas law. The equation follows:
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1,V_1\text{ and }T_1[/tex] are the initial pressure, volume and temperature of the gas
[tex]P_2,V_2\text{ and }T_2[/tex] are the final pressure, volume and temperature of the gas
We are given:
Conversion factor used: 1 atm = 760 torr
[tex]P_1=1.00atm\\V_1=1.00L\\T_1=23^oC=[23+273]=296K\\P_2=284torr=\frac{284}{760}=0.374atm\\V_2=?L\\T_2=-31^oC=[-31+273]K=242K[/tex]
Putting values in above equation, we get:
[tex]\frac{1.00atm\times 1.00L}{296K}=\frac{0.374atm\times V_2}{242K}\\\\V_2=\frac{1.00atm\times 1.00L\times 242K}{0.374atm\times 296K}=2.19L[/tex]
Hence, the volume when the pressure and temperature has changed is 2.19 L