the leg of a right triangle is 3 units and the hypotenuse is 11 units. What is the length, in units, of the other leg of the triangle? (4 points)

Respuesta :

ANSWER:

Length of the third side of right triangle is [tex]4 \sqrt[2]{7} \text { units }[/tex]

SOLUTION:

Given, two sides of a right triangle is 3 units and 11 units.

We need to find the length of third side.

Let, length of first side be “a”  i.e. a = 3

Length of hypotenuse be “h” i.e. h = 11

Length of second side be “b” and b =?

We know that, for a right angle triangle,  

[tex](\text { Hypotenuse })^{2}=(\text { side } 1)^{2}+(\text { side } 2)^{2}[/tex]

[tex]\mathrm{H}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}[/tex]

[tex]11^{2}=3^{2}+b^{2}[/tex]      

[tex]121=9+b^{2}[/tex]  

[tex]b^{2}=121-9[/tex]    

[tex]\mathrm{b}^{2}=112[/tex]

[tex]\mathrm{b}=\sqrt[2]{112}[/tex]  

[tex]\mathrm{b}=\sqrt[2]{16 \times 7}[/tex]

[tex]\mathrm{b}=\sqrt[2]{16} \times \sqrt[2]{7}[/tex]

[tex]b=4 \sqrt[2]{7}[/tex]    

hence, length of the third side of right triangle is [tex]4 \sqrt[2]{7} \text { units }[/tex]