Respuesta :
ANSWER:
Multiplication of [tex]\left(2 x^{2}-3 x\right) \text { and }\left(3 x^{2}+2 x-1\right) \text { is } 6 x^{4}-5 x^{3}-8 x^{2}+3 x[/tex]
SOLUTION:
We need to multiply [tex]\left(2 x^{2}-3 x\right) \text { and }\left(3 x^{2}+2 x-1\right)[/tex]
[tex]=\left(2 x^{2}-3 x\right)\left(3 x^{2}+2 x-1\right)[/tex]
[tex]=2 x^{2}\left(3 x^{2}+2 x-1\right)-3 x\left(3 x^{2}+2 x-1\right)[/tex]
[tex]=\left(2 x^{2} \times 3 x^{2}\right)+\left(2 x^{2} \times 2 x\right)+\left(2 x^{2} \times(-1)\right)-\left(3 x \times 3 x^{2}\right)-(3 x \times 2 x)-(3 x \times(-1))[/tex]
[tex]=6 x^{4}+4 x^{3}-2 x^{2}-9 x^{3}-6 x^{2}+3 x[/tex]
[tex]=6 x^{4}+(4-9) x^{3}-(2+6) x^{2}+3 x[/tex]
[tex]=6 x^{4}-5 x^{3}-8 x^{2}+3 x[/tex]
Hence, multiplication of [tex]\left(2 x^{2}-3 x\right) \text { and }\left(3 x^{2}+2 x-1\right) \text { is } 6 x^{4}-5 x^{3}-8 x^{2}+3 x[/tex]