Respuesta :

Answer:

see explanation

Step-by-step explanation:

Since the triangle is right use cosine or sine to solve for AC

note cos30° = [tex]\frac{\sqrt{3} }{2}[/tex], thus

cos30° =  [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{AC}{BC}[/tex]  =[tex]\frac{AC}{\frac{10}{3} }[/tex] and

[tex]\frac{AC}{\frac{10}{3} }[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex], that is

[tex]\frac{3x}{10}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )

6x = 10[tex]\sqrt{3}[/tex] ( divide both sides by 6 )

x = AC = [tex]\frac{10}{6}[/tex] [tex]\sqrt{3}[/tex] = [tex]\frac{5}{3}[/tex] [tex]\sqrt{3}[/tex]