Respuesta :

Answer:

[tex]a^{-1}(m)=\frac{ln(\frac{m}{0.6735})}{0.423}[/tex]

Step-by-step explanation:

The function is  [tex]a(m)=0.6735e^{0.423m}[/tex]

Changing functional notation of a(m) to y:

[tex]y=0.6735e^{0.423m}[/tex]

Now, interchanging m and y:

[tex]m=0.6735e^{0.423y}\\[/tex]

Now, solving for y:

[tex]e^{0.423y}=\frac{m}{0.6735}\\ln[e^{0.423y}]=ln[\frac{m}{0.6735}]\\0.423y=ln(\frac{m}{0.6735})\\y=\frac{ln(\frac{m}{0.6735})}{0.423}[/tex]

Thus, the inverse function is:

[tex]a^{-1}(m)=\frac{ln(\frac{m}{0.6735})}{0.423}[/tex]