Respuesta :

[tex]e^{-xy}\cos(x+y)[/tex] is continuous everywhere because the component functions [tex]e^{-x}[/tex] and [tex]\cos x[/tex] are continuous. So

[tex]\displaystyle\lim_{(x,y)\to(2,2)}e^{-xy}\cos(x+y)=e^{-4}\cos4[/tex]