Plz help me on this one

Let's solve!
What is [tex]3^{-2}[/tex] ? [tex]3^{-2}=[/tex] 0.11111111... [continued]
[tex](\frac{1}{3})^{2}=[/tex] 0.11111111... [continued]
[tex](\frac{1}{3})^{-2} = 9[/tex]
[tex]3^{-2}[/tex] · [tex]3^{1}[/tex] = 0.33333333... [continued]
[tex]3^{1} - 3^{-3}=[/tex] 2.962962962... [continued]
Your answer is:
A) [tex](\frac{1}{3})^{2} = 0.11111111...[/tex]
I hope this helps!
Answer:
[tex]\large\boxed{\left(\dfrac{1}{3}\right)^2}[/tex]
Step-by-step explanation:
[tex]\text{Use}\ a^{-n}=\left(\dfrac{1}{a}\right)^n\\\\3^{-2}=\left(\dfrac{1}{3}\right)^2[/tex]
[tex]\text{Other}\\\\\left(\dfrac{1}{3}\right)^{-2}=\left(\dfrac{3}{1}\right)^2=3^2\\\\3^{-2}\cdot3^1=3^{-2+1}=3^{-1}\\\\3^1-3^{-3}=3-\left(\dfrac{1}{3}\right)^3[/tex]