Respuesta :
Answer:
Explanation:
The time period of geosynchronous satellite must be equal to T .
The radius of its orbit will be ( R+ h )
orbital velocity V₀ = [tex]\sqrt{\frac{GM}{( R+h)} }[/tex]
Time period T = 2π( R + h ) / V₀
= 2π( R + h ) x [tex]\sqrt{\frac{( R+h)}{GM } }[/tex]
[tex]\frac{T^\frac{2}{3}(GM)^\frac{1}{3} }{(2\pi )^\frac{2}{3} }[/tex] = R +h
h = [tex]\frac{T^\frac{2}{3}(GM)^\frac{1}{3} }{(2\pi )^\frac{2}{3} }[/tex] - R.
Answer:
The expression is:
[tex]h=\sqrt[3]{\frac{GMT^{2} }{4\pi ^{2} } } -R[/tex]
Explanation:
please, the solution is in the attached Word file