A geosynchronous satellite moves in a circular orbit around the Earth and completes one circle in the same time T during which the Earth completes one revolution around its own axis. The satellite has mass m and the Earth has mass M and radius R. In order to be geosynchronous, the satellite must be at a certain height h above the Earth’s surface. Derive an expression for h in terms of m, M. R, T and constants.

Respuesta :

Answer:

Explanation:

The time period of geosynchronous satellite must be equal to T .

The radius of its orbit will be (  R+ h )

orbital velocity  V₀ =  [tex]\sqrt{\frac{GM}{( R+h)} }[/tex]

Time period T = 2π( R + h ) / V₀

= 2π( R + h ) x [tex]\sqrt{\frac{( R+h)}{GM } }[/tex]

[tex]\frac{T^\frac{2}{3}(GM)^\frac{1}{3}  }{(2\pi )^\frac{2}{3} }[/tex] = R +h

h = [tex]\frac{T^\frac{2}{3}(GM)^\frac{1}{3}  }{(2\pi )^\frac{2}{3} }[/tex] - R.

Answer:

The expression is:

[tex]h=\sqrt[3]{\frac{GMT^{2} }{4\pi ^{2} } } -R[/tex]

Explanation:

please, the solution is in the attached Word file

Ver imagen lcoley8