Respuesta :

Answer: f(-6)=-12

Step-by-step explanation:

We are given a  function : [tex]f(x) =\dfrac{ x^2-36 }{x+6}[/tex] which is continuous at x = -6.

Now, using identity [tex]a^2-b^2=(a+b)(a-b)[/tex] , we have

[tex]x^2-36=x^2-6^2=(x+6)(x-6)[/tex]

Replace [tex]x^2-36\text{ by }(x+6)(x-6)[/tex] in the given function:-

[tex]f(x) =\dfrac{ x^2-36 }{x+6}=\dfrac{(x+6)(x-6)}{x+6}[/tex]

Cancel (x+6) from numerator and denominator , we get

[tex]f(x)=x-6[/tex]

Now,[tex]f(-6)=-6-6=-12[/tex]

Hence, f(-6)=-12