A star with the mass (M=2.0×1030kg) and size (R=3.5×108m) of our sun rotates once every 30.0 days. After undergoing gravitational collapse, the star forms a pulsar that is observed by astronomers to emit radio pulses every 0.200 s . By treating the neutron star as a solid sphere, deduce its radius.

Respuesta :

Answer:

[tex]r=97.22x10^{3} m[/tex]

Explanation:

Using the angular formulas can determine the radius using both values neutron star and the the knowing star so

[tex]L=I*w[/tex]

[tex]L_{1}=I_{1}*w_{1}=L_{2}=I_{2}*w_{2}[/tex]

[tex]I_{1}*w_{1}=I_{2}*w_{2}[/tex]

I=Inertia of the star

w=angular velocity

[tex]I=\frac{2*m*r^{2}}{5}[/tex]

[tex]w=\frac{2\pi}{t}[/tex]

Notice the angular velocity determinate by the time and the Inertia have the radius value so

[tex]\frac{2}{5}*m*r_{sn}^{2}*\frac{2\pi }{t_{1}}=\frac{2}{5}*m*r_{s}^{2}*\frac{2\pi }{t_{2}}[/tex]

[tex]r_{sn}^{2}*\frac{1}{t_{1}}=r_{s}^{2}*\frac{1}{t_{2}}[/tex]

[tex]r_{sn}^{2}=r_{s}^{2}*\frac{t_{1}}{t_{2}}[/tex]

[tex]t_{1}=0.2s\\t_{2}=30day*\frac{24hr}{1day}*\frac{60minute}{1hr}*\frac{60seg}{1minute}=2.592x10^{6}s[/tex]

[tex]r_{sn}=3.5x10^{8}m*\sqrt{\frac{0.2s}{2.592x^{6}s}}[/tex]

[tex]r_{sn}=97.22x10^{3} m[/tex]