Respuesta :

Answer:

y = [tex]\frac{ - 3}{4}[/tex] x + 5

Step-by-step explanation:

The Line equation is:

y = [tex]\frac{- 3}{4} x - 5[/tex]

The line equation is in the form of y = m x + c

Slop of this line is (m1) = [tex]\frac{ - 3}{4}[/tex]

Let another line with slop (m2) , passes through point (4 , 2)

As per question the another line is parallel to the given line equation

So, slop of both the lines are  equal  

(m2) = (m1) = [tex]\frac{ - 3}{4}[/tex]

Hence equation of another line with slop [tex]\frac{ - 3}{4}[/tex] and passing through points ( 4 , 2) is

y - y1 = (m2) (y - x1)

I.e  y - 2 = [tex]\frac{ - 3}{4}[/tex] (x - 4)

Or,  [tex]4\times (y -2) = (- 3)\times (x - 4)[/tex]

Or , 4y - 8 =  -3x + 12

Or,   4y     =  -3x + 12 + 8

Or , 4y      =  -3x + 20

∴        y = [tex]\frac{ - 3}{4}[/tex] x + 5

Hence The value of y = [tex]\frac{ - 3}{4}[/tex] x + 5    Answer