Of the following transitions in the Bohr hydrogen atom, the ________ transition results in the absorption of the highest-energy photon. n = 2 → n = 1 n = 2 → n = 3 n = 5 → n = 6 n = 7 → n = 5

Respuesta :

Answer:

The n = 2 → n = 3 transition results in the absorption of the highest-energy photon.

Explanation:

[tex]E_n=-13.6\times \frac{Z^2}{n^2}ev[/tex]

Formula used for the radius of the [tex]n^{th}[/tex] orbit will be,

where,

[tex]E_n[/tex] = energy of [tex]n^{th}[/tex] orbit

n = number of orbit

Z = atomic number

Here: Z = 1 (hydrogen atom)

Energy of the first orbit in H atom .

[tex]E_1=-13.6\times \frac{Z^2}{1^2} eV=-13.6 eV[/tex]

Energy of the second orbit in H atom .

[tex]E_2=-13.6\times \frac{Z^2}{(2)^2} eV=-3.40 eV[/tex]

Energy of the third orbit in H atom .

[tex]E_3=-13.6\times \frac{Z^2}{(9)^2} eV=-1.51 eV[/tex]

Energy of the fifth orbit in H atom .

[tex]E_5=-13.6\times \frac{Z^2}{(2)^2} eV=-0.544 eV[/tex]

Energy of the sixth orbit in H atom .

[tex]E_6=-13.6\times \frac{Z^2}{(2)^2} eV=-0.378 eV[/tex]

Energy of the seventh orbit in H atom .

[tex]E_7=-13.6\times \frac{Z^2}{(2)^2} eV=-278 eV[/tex]

During an absorption of energy electron jumps from lower state to higher state.So,  absorption will take place in :

1) n = 2 → n = 3

2) n=  5 → n = 6

Energy absorbed when: n = 2 → n = 3

[tex]E=E_3-E_2[/tex]

[tex]E=(-1.51 eV) -(-3.40 eV)=1.89 eV[/tex]

Energy absorbed when: n = 5 → n = 6

[tex]E'=E_6-E_5[/tex]

[tex]E'=(-0.378 eV)-(-0.544 eV) =0.166 eV[/tex]

1.89 eV > 0.166 eV

E> E'

So,the n = 2 → n = 3 transition results in the absorption of the highest-energy photon.