Answer:
[tex]v_{f}=6311.38\frac{m}{s}[/tex]
Explanation:
a)
The ideal lift is the relation of the density of the fluid and the velocity so:
[tex]F_{lift}=\frac{1}{2}*p*A*(v_{f}^2-v_{o}^2)[/tex]
The density of the fluid is determinate as a
[tex]p=1.29\frac{kg}{m^{3} }[/tex]
The area in the situation give the information that the wings produce about 100N of lift per square meter of wings so
[tex]A=1 m^2[/tex]
The initial speed is
[tex]v_{o}=69 \frac{m}{s}[/tex]
Replacing
[tex]F_{lift}=\frac{1}{2}*1.29\frac{kg}{m^3}*1*m^2*(v_{f}^2-69^2\frac{m}{s})[/tex]
Resolve for vf
[tex]v_{f}^2=69^2\frac{m}{s}+\frac{2*1000N}{1.29\frac{kg}{m^3}*1m^2}[/tex]
[tex]v_{f}=6311.38\frac{m}{s}[/tex]