Answer:
a) [tex]\mu = 100, s = 3.015[/tex]
b) [tex]\mu = 100, s = 2.425[/tex]
c) [tex]\mu = 100, s = 1.581[/tex]
d) [tex]\mu = 100, s = 1.348[/tex]
e) [tex]\mu = 100, s = 0.477[/tex]
f) [tex]\mu = 100, s = 0.953[/tex]
Step-by-step explanation:
The mean is the same no matter the size of the sample.
The standard deviation of the sample is the standard deviation of population divided by the square root of the length of the sample.
So:
(a) n = 11
[tex]\mu = 100[/tex]
[tex]s = \frac{10}{\sqrt{11}} = 3.015[/tex]
(a) n = 17
[tex]\mu = 100[/tex]
[tex]s = \frac{10}{\sqrt{17}} = 2.425[/tex]
(c) n = 40
[tex]\mu = 100[/tex]
[tex]s = \frac{10}{\sqrt{40}} = 1.581[/tex]
(d) n = 55
[tex]\mu = 100[/tex]
[tex]s = \frac{10}{\sqrt{55}} = 1.348[/tex]
(e) n = 440
[tex]\mu = 100[/tex]
[tex]s = \frac{10}{\sqrt{440}} = 0.477[/tex]
(f) n = 110
[tex]\mu = 100[/tex]
[tex]s = \frac{10}{\sqrt{110}} = 0.953[/tex]