Ship collisions in the Houston Ship Channel are rare. Suppose the number of collisions are Poisson distributed, with a mean of 1.2 collisions every four months. Appendix A Statistical Tables (Round your answers to 4 decimal places.) a. What is the probability of having no collisions occur over a four-month period? b. What is the probability of having exactly two collisions in a two-month period? c. What is the probability of having one or fewer collisions in a six-month period?

Respuesta :

Answer:

[tex]a) \simeq 0.3012[/tex]   [tex]b) \simeq 0.0494[/tex] c) [tex]\simeq 0.2438[/tex]

Step-by-step explanation:

Rate of collision,

1.2 collisions every 4 months

or, [tex]\frac{1.2}{4}[/tex]

= 0.3 collisions per  month

So, the Poisson distribution for the random variable no. of collisions per month (X) is given by,

          P(X =x) = [tex]\frac{e^{-\lambda}\times {\lambda}^{x}}}{x!} [/tex]

                                                           for x ∈ N ∪ {0}

                       =  0 otherwise --------------------------------------(1)

here, [tex]\lambda = 0.3[/tex] collision / month

No collision over a 4 month period means no collision per month or X =0

Putting X = 0 in (1) we get,

         P(X = 0) = [tex]\frac{e^{-0.3}\times {\0.3}^{0}}{0!} [/tex]

                      [tex]\simeq 0.7408182207[/tex] ------------------------------------(2)

Now, since we are calculating  this for 4 months,

so, P(No collision in 4 month period)

     =[tex]0.7408182207^{4}[/tex]

     [tex]\simeq 0.3012[/tex]  -----------------------------------------------------------(3)

2 collision in 2 month period means 1 collision per month or X =1

Putting X =1 in (1) we get,

           P(X =1) = [tex]\frac{e^{-0.3}\times {\0.3}^{1}}{1!} [/tex]

                      [tex]\simeq 0.2222454662[/tex] ------------------------------------(4)

Now, since we are calculating this for 2 months, so ,

P(2 collisions in 2 month period)

                =[tex]0.2222454662^{2}[/tex]

                [tex]\simeq 0.0494[/tex] -----------------------------------------(5)

1 collision in 6 months period means

                                [tex]\frac{1}{6}[/tex] collision per month

Now, P(1 collision in 6 months period)

= P( X = 1/6]  (which is to be estimated)

=[tex]\frac {P(X=0)\times 5 + P(X =1)\times 1}{6}[/tex]

= \frac {0.7408182207 \times 5 + 0.2222454662 \times 1}{6}[/tex]

[tex]\simeq 0.6543894283[/tex]-------------------------------------------(6)

So,

P(1  collision in 6 month period)

  =  [tex]0.6543894283^{6}[/tex]

   [tex]\simeq 0.0785267444[/tex] ------------------------------------------------(7)

So,

P(No collision in 6 months period)

  = [tex](P(X =0)^{6}[/tex]

   [tex]\simeq 0.1652988882[/tex] ---------------------------------(8)

so,

P(1 or fewer collision in 6 months period)

= (8) + (7 ) = 0.0785267444 +0.1652988882

[tex]\simeq  0.2438[/tex] ---------------------------------------------(9)          

Using the Poisson distribution, it is found that there is a:

a) 0.3012 = 30.12% probability of having no collisions occur over a four-month period.

b) 0.0988 = 9.88% probability of having exactly two collisions in a two-month period.

c) 0.4628 = 46.28% probability of having one or fewer collisions in a six-month period.

What is the Poisson distribution?

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by:

[tex]P(X = x) = \frac{e^{-\mu}\mu^{x}}{(x)!}[/tex]

The parameters are:

  • x is the number of successes
  • e = 2.71828 is the Euler number
  • [tex]\mu[/tex] is the mean in the given interval.

Item a:

Mean of 1.2 collisions every four months, hence [tex]\mu = 1.2[/tex].

The probability is P(X = 0), hence:

[tex]P(X = x) = \frac{e^{-\mu}\mu^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-1.2}1.2^{0}}{(0)!} = 0.3012[/tex]

0.3012 = 30.12% probability of having no collisions occur over a four-month period.

Item b:


Two months, hence [tex]\mu = 0.5(1.2) = 0.6[/tex].

The probability is P(X = 2), hence:

[tex]P(X = x) = \frac{e^{-\mu}\mu^{x}}{(x)!}[/tex]

[tex]P(X = 2) = \frac{e^{-0.6}0.6^{2}}{(2)!} = 0.0988[/tex]

0.0988 = 9.88% probability of having exactly two collisions in a two-month period.

Item c:

Six months, hence [tex]\mu = 1.5(1.2) = 1.8[/tex].

The probability is:

[tex]P(X \leq 1) = P(X = 0) + P(X = 1)[/tex]

In which:

[tex]P(X = x) = \frac{e^{-\mu}\mu^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-1.8}1.8^{0}}{(0)!} = 0.1653[/tex]

[tex]P(X = 1) = \frac{e^{-1.8}1.8^{1}}{(1)!} = 0.2975[/tex]

Hence:

[tex]P(X \leq 1) = P(X = 0) + P(X = 1) = 0.1653 + 0.2975 = 0.4628[/tex]

0.4628 = 46.28% probability of having one or fewer collisions in a six-month period.

More can be learned about the Poisson distribution at https://brainly.com/question/13971530