Respuesta :

The work is the difference between the final and initial kinetic energy:

[tex]W=\Delta K = \dfrac{1}{2}mv^2_f-\dfrac{1}{2}mv^2_i=\dfrac{1}{2}m(v^2_f-v^2_i)[/tex]

Substitute your values to get

[tex]W=\dfrac{1}{2}\cdot 2(25-0)=25[/tex]

Answer : The work done is, 25 J

Step-by-step explanation :

As we know that work is the difference between the final and initial kinetic energy.

That means,

[tex]w=K.E=\frac{1}{2}m\times v^2[/tex]

[tex]w=K.E=\frac{1}{2}m\times (v_f-v_i)^2[/tex]

where,

w = work done

m = mass = 2 kg

K.E = kinetic energy

[tex]v_i[/tex] = initial speed = 0 m/s

[tex]v_f[/tex] = final speed = 5 m/s

Now put all the given values in the above formula, we get:

[tex]w=\frac{1}{2}\times (2kg)\times (5-0)^2m^2/s^2[/tex]

[tex]w=25kg.m^2/s^2=25J[/tex]

Therefore, the work done is, 25 J