find the first three terms in the expansion , in ascending power of x , of (2+x)^6 and obtain the coefficient of x^2 in the expansion of (2+x-x^2)^6
please answer quickly​

Respuesta :

Answer:

The first 3 terms in the expansion of [tex](2 + x)^{6}[/tex] , in ascending power of x are,

[tex]64 , 192 \times x^{1} {\textrm{  and  }}240 \times x^{2} [/tex]

coefficient of [tex]x^{2}[/tex] in the expansion of [tex](2+x - x^{2})^{6}[/tex] = (240 - 192) = 48

Step-by-step explanation:

[tex](2+x)^{6}[/tex]

= [tex]\sum_{k=0}^{6}(6_{C_{k}} \times x^{k} \times 2^{6 - k})[/tex]

= [tex]6_{C_{0}} \times x^{0} \times 2^{6}  + 6_{C_{1}} \times x^{1} \times 2^{5} + 6_{C_{2}} \times x^{2} \times 2^{4}[/tex] + terms involving higher powers of x

= [tex]64 + 192 \times x^{1} + 240 \times x^{2} [/tex] + terms involving higher powers of x

so, the first 3 terms in the expansion of [tex](2 + x)^{6}[/tex] , in ascending power of x are,

[tex]64 , 192 \times x^{1} {\textrm{  and  }}240 \times x^{2} [/tex]

Again,

[tex](2+x - x^{2})^{6}[/tex]

= [tex]\sum_{k=0}^{6}(6_{C_{k}} \times (2 + x)^{k} \times (-x^{2})^{6 - k})[/tex]

Now, by inspection,

the term [tex]x^{2}[/tex] comes from k =5 and k = 6

for k = 5, the coefficient of  [tex]x^{2}[/tex]  is , [tex](-32) \times 6[/tex] = -192

for k = 6 , the coefficient of [tex]x^{2}[/tex] is, [tex]6_{C_{2}} \times 2^{4}[/tex] = 240

so,   coefficient of [tex]x^{2}[/tex] in the final expression = (240 - 192) = 48