What are the solutions of the equation (2x + 3)2 + 8(2x + 3) + 11 = 0? Use u substitution and the quadratic formula to solve
X-

Respuesta :

Answer:

[tex]x=\frac{-7+\sqrt{15}}{2}[/tex]

[tex]x=\frac{-7-\sqrt{15}}{2}[/tex]

Step-by-step explanation:    

we have

[tex](2x+3)^2+8(2x+3)+1=0[/tex]

Let

[tex]u=(2x+3)[/tex]

substitute the variable

so

[tex]u^2+8u+1=0[/tex]

we know that

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]u^2+8u+1=0[/tex]

so

[tex]a=1\\b=8\\c=1[/tex]

substitute in the formula

[tex]u=\frac{-8(+/-)\sqrt{8^{2}-4(1)(1)}} {2(1)}[/tex]

[tex]u=\frac{-8(+/-)\sqrt{60}} {2}[/tex]

[tex]u=\frac{-8(+/-)2\sqrt{15}} {2}[/tex]

[tex]u=-4(+/-)\sqrt{15}[/tex]

so

[tex]u_1=-4+\sqrt{15}[/tex]

[tex]u_2=-4-\sqrt{15}[/tex]

Find the value of x

Remember that

[tex]u=(2x+3)[/tex]

First solution

[tex]-4+\sqrt{15}=(2x+3)[/tex]

[tex]2x=-4+\sqrt{15}-3[/tex]

[tex]2x=-7+\sqrt{15}[/tex]

[tex]x=\frac{-7+\sqrt{15}}{2}[/tex]

Second solution

[tex]-4-\sqrt{15}=(2x+3)[/tex]

[tex]2x=-4-\sqrt{15}-3[/tex]

[tex]2x=-7-\sqrt{15}[/tex]                

[tex]x=\frac{-7-\sqrt{15}}{2}[/tex]

Answer:

B Edge 2022

Step-by-step explanation: