Respuesta :

Solving the expression: [tex]\frac{((3^5)^2)}{(3^{-2})}[/tex] we get 531441.

Step-by-step explanation:

We need to solve the expression: [tex]\frac{((3^5)^2)}{(3^{-2})}[/tex]

Solving:

[tex]\frac{((3^5)^2)}{(3^{-2})}[/tex]

Applying exponent rule: [tex](a^b)^c=a^{bc}[/tex]

[tex]=\frac{3^{10}}{3^{-2}}[/tex]

Applying another exponent rule: [tex]\frac{x^a}{x^b}=x^{a-b}[/tex]

[tex]=3^{10-(-2)}\\=3^{10+2}\\=3^{12}\\=531441[/tex]

So, solving the expression: [tex]\frac{((3^5)^2)}{(3^{-2})}[/tex] we get 531441.

Keywords: Solving Exponents  

Learn more about Solving Exponents at:

  • brainly.com/question/13174260
  • brainly.com/question/13174254
  • brainly.com/question/13174259

#learnwithBrainly