Solving the expression: [tex]\frac{((3^5)^2)}{(3^{-2})}[/tex] we get 531441.
Step-by-step explanation:
We need to solve the expression: [tex]\frac{((3^5)^2)}{(3^{-2})}[/tex]
Solving:
[tex]\frac{((3^5)^2)}{(3^{-2})}[/tex]
Applying exponent rule: [tex](a^b)^c=a^{bc}[/tex]
[tex]=\frac{3^{10}}{3^{-2}}[/tex]
Applying another exponent rule: [tex]\frac{x^a}{x^b}=x^{a-b}[/tex]
[tex]=3^{10-(-2)}\\=3^{10+2}\\=3^{12}\\=531441[/tex]
So, solving the expression: [tex]\frac{((3^5)^2)}{(3^{-2})}[/tex] we get 531441.
Keywords: Solving Exponents
Learn more about Solving Exponents at:
#learnwithBrainly