An insurance sales representative sells policies to 5 men, all of identical age and in good health. According to the actuarial tables, the probability that a man of this particular age will be alive 30 years hence is . Find the probability that in 30 years (a) all 5 men, (b) at least 3 men, (c) only 2 men, (d) at least 1 man will be alive

Respuesta :

Answer:

(a) [tex]\frac{32}{243}[/tex]

(b) [tex]\frac{192}{243}[/tex]

(c) [tex]\frac{40}{243}[/tex]

(d) [tex]\frac{242}{243}[/tex]

Additional Information:

An information is missing in the given question. The probability that a man of this particular age will be alive 30 years hence is [tex]\frac{2}{3}[/tex]. This additional information will be used to solve the question.

Step-by-step explanation:

Let the probability that one person will be alive in 30 years be p

                                      [tex]p = \frac{2}{3}[/tex]

Let the probability that one person will not be alive in 30 years be q

                                      q = 1 - p

                                      [tex]q = 1 - \frac{2}{3}[/tex]

                                      [tex]q = \frac{1}{3}[/tex]

The probability function is;

                               p(x) = ⁿCₓ × pˣ × q⁽ⁿ⁻ˣ⁾                                                        

(a) The probability that all 5 men will be alive in 30 years:

     p(x=5) = ⁵C₅ × [tex](\frac{2}{3})^{5}[/tex] × [tex](\frac{1}{3})^{5-5}[/tex]

                                        = (1 × [tex](\frac{2}{3})^{5}[/tex] × 1)

                                         [tex]=\frac{32}{243}[/tex]  

(b) The probability that at least 3 men will be alive in 30 years:

       p(x≥3) = ⁵C₃ × [tex](\frac{2}{3})^{3}[/tex] × [tex](\frac{1}{3})^{5-3}[/tex] + ⁵C₄ × [tex](\frac{2}{3})^{4}[/tex] × [tex](\frac{1}{3})^{5-4}[/tex] + ⁵C₅ × [tex](\frac{2}{3})^{5}[/tex] × [tex](\frac{1}{3})^{5-5}[/tex]

       p(x≥3) =   (10 × [tex]\frac{8}{27}[/tex] × [tex]\frac{1}{9}[/tex]) + (5 × [tex]\frac{16}{81}[/tex] × [tex]\frac{1}{3}[/tex]) + (1 × [tex]\frac{32}{243}[/tex] × 1)

       p(x≥3) [tex]=\frac{80}{243}[/tex] + [tex]\frac{80}{243}[/tex] + [tex]\frac{32}{243}[/tex])

       p(x≥3) [tex]=\frac{192}{243}[/tex]

(c) The probability that only 2 men will be alive in 30 years:

     p(x=2) = ⁵C₂ × [tex](\frac{2}{3})^{2}[/tex] × [tex](\frac{1}{3})^{5-2}[/tex]

     p(x=2) = (10 × [tex]\frac{4}{9}[/tex] × [tex]\frac{1}{27}[/tex])

     p(x=2) = [tex]\frac{40}{243}[/tex]

(d) The probability that at least 1 men will be alive in 30 years:

  p(x≥1) = ⁵C₁ × [tex](\frac{2}{3})^{1}[/tex] × [tex](\frac{1}{3})^{5-1}[/tex] × ⁵C₂ × [tex](\frac{2}{3})^{2}[/tex] × [tex](\frac{1}{3})^{5-2}[/tex] × ⁵C₃ × [tex](\frac{2}{3})^{3}[/tex] × [tex](\frac{1}{3})^{5-3}[/tex] + ⁵C₄ × [tex](\frac{2}{3})^{4}[/tex] × [tex](\frac{1}{3})^{5-4}[/tex] + ⁵C₅ × [tex](\frac{2}{3})^{5}[/tex] × [tex](\frac{1}{3})^{5-5}[/tex]

  p(x≥1) = (5 × [tex]\frac{2}{3}[/tex] × [tex]\frac{1}{81}[/tex]) × (10 × [tex]\frac{4}{9}[/tex] × [tex]\frac{1}{27}[/tex]) × (10 × [tex]\frac{8}{27}[/tex] × [tex]\frac{1}{9}[/tex]) + (5 × [tex]\frac{16}{81}[/tex] × [tex]\frac{1}{3}[/tex]) + (1 × [tex]\frac{32}{243}[/tex] × 1)  

  p(x≥1) [tex]=\frac{10}{243}[/tex] + [tex]\frac{40}{243}[/tex] + [tex]\frac{80}{243}[/tex] + [tex]\frac{80}{243}[/tex] + [tex]\frac{32}{243}[/tex]

  p(x≥1) [tex]=\frac{242}{243}[/tex]