Answer:
a)n= 46 .69 moles
b)[tex]C_v=12.47\ J/mol.K[/tex]
c)W = 0
d)ΔU = 23 KJ
e)ΔT= 39.05 K
g)T₂= 339.05 K
P₂ = 5.65 atm
Explanation:
Given that
V₁=V₂ = 0.23 m³ = 230 L
T₁ = 300 K
P₁ = 5 atm ( 1 atm =100 KPa)
Q = 23 KJ
The ideal gas equation
P V = n R T
P=Pressure , V=Volume , n= Number of moles , T=Temperature
R=gas constant = 0.0821 atm.L/K.mol
P₁ V₁ = n R T₁
[tex]n=\dfrac{P_1V_1}{RT_1}[/tex]
[tex]n=\dfrac{5\times 230}{0.0821\times 300}[/tex]
n= 46 .69 moles
Specific heat ;
The specific heat of the gas Cv
[tex]C_v=\dfrac{3}{2} R[/tex]
R=8.314 J / mol·K
[tex]C_v=\dfrac{3}{2} \times 8.314\ J /mol.K[/tex]
[tex]C_v=12.47\ J/mol.K[/tex]
We know that work done given as
W = P ΔV
ΔV =Change in volume ,P =pressure
here ΔV = 0
W = 0
First law of thermodynamics
Q= ΔU +W
Q= ΔU = 23 KJ
ΔU =Change in the internal energy
Q = n Cv ΔT
23 000 = 46.69 x 12.47 ΔT
ΔT= 39.05 K
Change in the temperature =39.05 K
T₂- 300 = 39.05 K
T₂= 339.05 K
[tex]P_2=\dfrac{T_2}{T_1}P_1[/tex]
[tex]P_2=\dfrac{339.05}{300}\times 5[/tex]
P₂ = 5.65 atm