Respuesta :

Answer:

2.  [tex]x = \frac{\pi }{4} , \frac{3\pi }{4}, \frac{5\pi }{4}, \frac{7\pi }{4}[/tex]

3. -0.28

4. a. [tex]- \frac{\pi }{6}[/tex]

b. [tex]\frac{3\pi }{4}[/tex]

Step-by-step explanation:

2. Given that  

[tex]2\sin^{2}x = 1[/tex]

⇒ [tex]\sin x = \frac{1}{\sqrt{2} }[/tex] or  [tex]\sin x = - \frac{1}{\sqrt{2} }[/tex]

Since x belongs to [0,2π).

Therefore, [tex]x = \frac{\pi }{4} , \frac{3\pi }{4}, \frac{5\pi }{4}, \frac{7\pi }{4}[/tex] (Answer)

3. Given that,  [tex]\cos \theta = \frac{3}{5}[/tex]

⇒ [tex]\theta = \cos^{-1}(\frac{3}{5}) = 53.13[/tex] Degrees  

{Since [tex]\theta[/tex] is in first quadrant}

So, [tex]\cos 2\theta = \cos (2 \times 53.13) = -0.28[/tex] (Answer)

4. a. Given [tex]\sin^{-1}(- \frac{1}{2}) = - \frac{\pi }{6}[/tex]

b. [tex]\cos^{-1}(- \frac{\sqrt{2} }{2} ) = \cos^{-1}(- \frac{1}{\sqrt{2} } ) = \frac{3\pi }{4}[/tex] (Answer)