Respuesta :

The right answer is Option 2: [tex]\frac{7p^{15}}{3q^{12}}[/tex]

Step-by-step explanation:

Given expression is

[tex]\frac{28p^9q^{-5}}{12p^{-6}q^7}[/tex]

When the variables are same, the exponents of denominator are subtracted from the exponents of numerators;

[tex]=\frac{28p^{9-(6)}q^{-5-7}}{12}\\\\=\frac{28p^{9+6}q^{-12}}{12}\\\\=\frac{28p^{15}q^{-12}}{12}[/tex]

28 and 12 both are divisible by 4, therefore,

[tex]=\frac{7p^{15}q^{-12}}{3}[/tex]

For making the exponent of q positive,

[tex]=\frac{7p^{15}}{3q^{12}}[/tex]

The expression [tex]\frac{28p^9q^{-5}}{12p^{-6}q^7}[/tex] is equivalent to [tex]\frac{7p^{15}}{3q^{12}}[/tex]

The right answer is Option 2: [tex]\frac{7p^{15}}{3q^{12}}[/tex]

Keywords: linear expression, exponent

Learn more about exponents at:

  • brainly.com/question/788903
  • brainly.com/question/774670

#LearnwithBrainly