Consider the following reaction. Mg(s) + 2VO2+ (aq)+ 4 H+(aq) → Mg2+(aq) + 2 VO2+(aq) + H2O(l)E⁰cell = 3.37 V.a.Calculate the ΔG⁰∘ for the reaction.Express your answer to three significant figures.b. Calculate the K for the reaction.Express your answer to three significant figures.

Respuesta :

Answer :

(a) The value of Gibbs free energy for the reaction is [tex]-6.50\times 10^5J/mol[/tex]

(b) The value of [tex]K[/tex] at 298 is, [tex]8.28\times 10^{113}[/tex]

Explanation :

The given cell reaction is:

[tex]Mg(g)+2VO_2^{+}(aq)+4H^+(aq)\rightarrow Mg^{2+}(aq)+2VO^{2+}(aq)+2H_2O(l)[/tex]

The half reaction will be:

Reaction at anode (oxidation) : [tex]Mg\rightarrow Mg^{2+}+2e^-[/tex]

Reaction at cathode (reduction) : [tex]2VO_2^{+}+4H^++2e^-\rightarrow 2VO^{2+}+2H_2O[/tex]

First we have to calculate the Gibbs free energy.

Formula used :

[tex]\Delta G^o=-nFE^o[/tex]

where,

[tex]\Delta G^o[/tex] = Gibbs free energy = ?

n = number of electrons = 2    (from the reaction)

F = Faraday constant = 96500 C/mole

[tex]E^o[/tex] = standard e.m.f of cell = 3.37 V

Now put all the given values in this formula, we get the Gibbs free energy.

[tex]\Delta G^o=-(2\times 96500\times 3.37)=-650410J/mol=-6.50\times 10^5J/mol[/tex]

Thus, the value of Gibbs free energy for the reaction is [tex]-6.50\times 10^5J/mol[/tex]

Now we have to calculate the value of equilibrium constant.

Formula used :

[tex]\Delta G^o=-2.303\times RT\times \log K[/tex]

where,

R = universal gas constant = 8.314 J/K/mole

T = temperature = [tex]25^oC=273+25=298K[/tex]

K = equilibrium constant = ?

Now put all the given values in this formula, we get the value of [tex]K[/tex]

[tex]-6.50\times 10^5J/mole=-2.303\times (8.314 J/K/mole)\times (298K)\times \log K[/tex]

[tex]\log K=113.918[/tex]

[tex]K=8.28\times 10^{113}[/tex]

Therefore, the value of [tex]K[/tex] at 298 is, [tex]8.28\times 10^{113}[/tex]