Respuesta :

Answer:

The intercept of the given points is -  [tex]\frac{41}{11}[/tex]

Step-by-step explanation:

Given points as :

( [tex]x_1[/tex] , [tex]y_1[/tex] ) = ( [tex]\frac{3}{2}[/tex] , - 7 )

( [tex]x_2[/tex] , [tex]y_2[/tex] ) = ( - 4 , 5 )

Now, slope of line using given points can be written as :

Slope = m = [tex]\dfrac{y_2 - y_1}{x_2 - x_1}[/tex]

or. m = [tex]\dfrac{5 - ( - 7 )}{( - 4 ) -  [tex]\frac{3}{2}[/tex]}[/tex]

or, m = [tex]\dfrac{12}{( - 4 ) -  [tex]\frac{3}{2}[/tex]}[/tex]

or, m = [tex]\frac{12}{\frac{- 8 - 3}{2}}[/tex]

Or, m =  [tex]\frac{12}{\frac{- 11}{2}}[/tex]

∴   m = [tex]\frac{-24}{11}[/tex]

So, The slope of the line using points = m = [tex]\frac{-24}{11}[/tex]

now, equation of line in slope intercept form can be written as

y - [tex]y_2[/tex] = m × ( x - [tex]x_2[/tex] )

or, y - 5 =  [tex]\frac{-24}{11}[/tex] × ( x - ( - 4 ) )

or, y - 5 =  [tex]\frac{-24}{11}[/tex] × ( x + 4 )

Or, 11 × ( y - 5 ) = - 24 × ( x + 4 )

Or, 11 y - 55 = - 24 x - 96

Or, 11 y = - 24 x - 96 + 55

Or, 11 y = - 24 x - 41

∴  y = [tex]\frac{-24}{11}[/tex] x -  [tex]\frac{41}{11}[/tex]

Now, comparing with slope intercept equation

I.e y = m x + c           , where c is the intercept

So, The intercept of points is  -  [tex]\frac{41}{11}[/tex]

Hence The intercept of the given points is -  [tex]\frac{41}{11}[/tex] Answer