Respuesta :

tan 3pi/4 is equal to -1

Solution:

Given that we have to find value of [tex]\tan \frac{3 \pi}{4}[/tex]

Let us evaluate the given expression

[tex]\tan \frac{3 \pi}{4}=\tan \left(\pi-\frac{\pi}{4}\right)[/tex]

[tex]\tan (a-b)=\frac{\tan a-\tan b}{1+\tan a \tan b}[/tex]  ---- eqn 1

[tex]\text{In} \tan \left(\pi-\frac{\pi}{4}\right), a=\pi \text { and } b=\frac{\pi}{4}[/tex]

Substituting the values in eqn 1,

[tex]\tan \left(\pi-\frac{\pi}{4}\right)=\frac{\tan \pi-\tan \frac{\pi}{4}}{1+\tan \pi \tan \frac{\pi}{4}}[/tex]

we know that by trignometric values,

[tex]\tan \pi=0 \text { and } \tan \frac{\pi}{4}=1[/tex]

Substituting these values we get,

[tex]\tan \left(\pi-\frac{\pi}{4}\right)=\frac{0-1}{1+0(1)}=\frac{-1}{1}=-1[/tex]

Therefore,

[tex]\tan \left(\pi-\frac{\pi}{4}\right)=\tan \frac{3 \pi}{4}=-1[/tex]

Thus the value of tan 3pi/4 is -1